A missão Juno da NASA conseguiu os primeiros resultados sobre a quantidade de água na atmosfera de Júpiter. Os resultados, publicados recentemente na revista Nature Astronomy, estimam que, no equador, a água representa cerca de 0,25% das moléculas na atmosfera de Júpiter – quase três vezes a quantidade que se verifica no Sol. Estas são também as primeiras descobertas sobre a abundância de água neste gigante gasoso desde que, em 1995, a missão Galileo sugeriu que Júpiter poderia ser extremamente seco em comparação com o Sol (a comparação não tem por base a água líquida, mas a presença dos seus componentes, oxigénio e hidrogénio, presentes no Sol).

A JunoCam, a bordo da sonda Juno da NASA, capturou esta imagem da região equatorial sul de Júpiter a 1 de setembro de 2017. Créditos: NASA/JPL-Caltech/SwRI/MSSS/Kevin M. Gill.

A obtenção de uma estimativa precisa da quantidade total de água na atmosfera de Júpiter é, há décadas, procurada pelos cientistas planetários, e representa uma peça determinante no quebra-cabeça da formação do Sistema Solar. Júpiter foi provavelmente o primeiro planeta a formar-se e contém a maior parte do gás e da poeira que não foram agregados pelo Sol.

As principais teorias sobre a sua formação baseiam-se na quantidade de água que o planeta absorveu. A abundância de água também tem implicações importantes para a meteorologia (para o fluir das correntes de vento) e para a estrutura interna deste gigante gasoso. As descargas elétricas – um fenómeno tipicamente alimentado pela humidade – detetadas em Júpiter pela Voyager e outras sondas espaciais já sugeriam a presença de água, mas a estimativa precisa da quantidade de água nas profundezas da atmosfera de Júpiter permanecia incerta.

Nuvens brancas e espessas visíveis nesta imagem da zona equatorial de Júpiter obtida pela JunoCam. Nas frequências de micro-ondas, estas nuvens são transparentes, permitindo que o radiómetro de micro-ondas da Juno meça a água na atmosfera de Júpiter. A imagem foi obtida durante a aproximação de 16 de dezembro de 2017. Créditos: NASA/JPL-Caltech/SwRI/MSSS/Kevin M. Gill.

Em dezembro 1995, a sonda Galileo parou de transmitir apenas 57 minutos após o início da sua descida, devido à pressão esmagadora. Mas antes disso transmitiu por rádio medidas da quantidade de água na atmosfera do gigante gasoso, obtidas pelo espectrómetro, até uma profundidade de cerca de 120 quilómetros, onde a pressão atmosférica atingia cerca de 22 bar. Os cientistas que trabalhavam nos dados ficaram desanimados por encontrar dez vezes menos água do que espetavam.

E houve algo ainda mais surpreendente: a quantidade de água medida pela sonda Galileo parecia estar ainda a aumentar na maior profundidade medida, bem abaixo do nível onde as teorias sugerem que a atmosfera deve estar bem misturada. Numa atmosfera bem misturada, o conteúdo de água é constante em toda a região e representa em geral uma média global; por outras palavras, é provável que esse conteúdo seja representativo da água em todo o planeta. Estes resultados, combinados com um mapa infravermelho obtido ao mesmo tempo por um telescópio terrestre, sugeriram que a sonda poderia ter tido apenas azar, obtendo a amostra num ponto meteorológico de Júpiter invulgarmente quente e seco.

“Quando pensamos que já estamos a perceber melhor as coisas, Júpiter lembra-nos de que ainda temos muito a aprender,” disse Scott Bolton, investigador principal da Juno no Southwest Research Institute, em San Antonio. “A surpreendente descoberta da Juno de que a atmosfera não estava bem misturada, mesmo muito abaixo do topo das nuvens, é um quebra-cabeças que ainda estamos a tentar perceber. Ninguém imaginaria que a água pudesse ser tão variável em todo o planeta”.

Medindo a água a partir de cima

Movida a energia solar, a sonda Juno foi lançada em 2011. Tendo em conta a experiência da sonda Galileo, a missão Juno pretende obter leituras de abundâncias de água em grandes regiões do enorme planeta. O MWR (Microwave Radiometer) da Juno, um novo tipo de instrumento para a exploração planetária no espaço profundo, observa Júpiter de cima usando seis antenas que medem a temperatura atmosférica a várias profundidades em simultâneo. O MWR aproveita o facto de a água absorver certos comprimentos de onda da radiação de micro-ondas, o mesmo truque usado pelos fornos de micro-ondas para aquecer rapidamente os alimentos. As temperaturas medidas são usadas para restringir a quantidade de água e amónia na atmosfera profunda, pois ambas as moléculas absorvem a radiação de micro-ondas.

Para obter estas descobertas, a equipa científica da Juno usou os dados recolhidos durante os 8 primeiros voos de aproximação a Júpiter. Inicialmente, concentraram-se na região equatorial, onde a atmosfera parece melhor misturada, mesmo em profundidade, que em outras regiões. A partir de cima, o radiómetro foi capaz de recolher dados na atmosfera de Júpiter a uma maior profundidade do que a sonda Galileo – 150 quilómetros, onde a pressão atinge cerca de 33 bar.

“Descobrimos que há mais água no equador do que aquela que a sonda Galileo mediu,” disse Cheng Li, cientista da Juno na Universidade da Califórnia, em Berkeley. “Como a região equatorial em Júpiter é muito especial, precisamos de comparar estes resultados com a quantidade de água existente em outras regiões”.

Em direção a norte

A órbita de 53 dias da Juno está lentamente a mover-se para norte, como se pretendia, trazendo a cada aproximação mais informação sobre o hemisfério norte de Júpiter. Os membros da equipa estão ansiosos por ver como varia o conteúdo de água na atmosfera com a latitude e a região, e também por perceber o que têm a dizer os polos, ricos em ciclones, sobre a abundância global de água no gigante gasoso.

A 24ª aproximação de Juno a Júpiter ocorreu a 17 de fevereiro. A próxima irá ocorrer a 10 de abril de 2020.

“Qualquer aproximação é um evento de descoberta,” disse Bolton. “Em Júpiter, temos sempre algo novo. A Juno deu-nos uma lição importante: precisamos de nos aproximar de um planeta para testarmos as nossas teorias”.

 

Fonte da notícia: NASA

 

Classificação dos leitores
[Total: 16 Média: 1.3]